Damage evolution of novel 3D textile-reinforced composites under fatigue loading conditions

For the simulation of the material degradation process during multiaxial fatigue loading of 3D textile-reinforced composites a new physically based damage model is developed based on the fracture mode concept (FMC) of CUNTZE and the continuum damage mechanics. For the damage analysis and the model p...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology Vol. 70; no. 1; pp. 186 - 192
Main Authors: Gude, M., Hufenbach, W., Koch, I.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 2010
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the simulation of the material degradation process during multiaxial fatigue loading of 3D textile-reinforced composites a new physically based damage model is developed based on the fracture mode concept (FMC) of CUNTZE and the continuum damage mechanics. For the damage analysis and the model parameter identification cyclic tests under superposed tension/compression–torque loading are performed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2009.10.010