Steam gasification as a viable solution for converting single-use medical items into chemical building blocks with high yields for the plastic industry

This study explores the challenge of recycling single-use medical items due to their non-recyclable nature and associated environmental concerns. To align with the circular economy principles, we propose thermochemical recycling, specifically steam gasification, for carbon atoms recovery. Face masks...

Full description

Saved in:
Bibliographic Details
Published in:Resources, conservation and recycling Vol. 201; p. 107342
Main Authors: González-Arias, Judith, Forero-Franco, Renesteban, Mandviwala, Chahat, Seemann, Martin
Format: Journal Article
Language:English
Published: 01-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the challenge of recycling single-use medical items due to their non-recyclable nature and associated environmental concerns. To align with the circular economy principles, we propose thermochemical recycling, specifically steam gasification, for carbon atoms recovery. Face masks, plastic syringes, non-woven gowns, and nitrile gloves were tested at different temperatures (700 °C, 750 °C, and 800 °C) in a lab-scale reactor. A significant portion of the carbon in the feedstock could be effectively recovered as valuable chemical building blocks (i.e., olefins, ethane, and BTXS species), enabling their direct application in the chemical industry and reducing reliance on fossil resources. At 700 °C, carbon recovery percentages were approximately 79 % for face masks, 82 % for plastic syringes, 38 % for nitrile gloves, and 76 % for non-woven gowns. Higher temperatures led to reduced recovery due to secondary cracking reactions. Overall, this study highlights the circularity potential of single-use medical waste contributing to sustainable waste management in healthcare.
ISSN:0921-3449
1879-0658
DOI:10.1016/j.resconrec.2023.107342