300-W cryogenically cooled Yb:YAG laser

Thermooptic effects often limit the power and beam quality of bulk-solid-state lasers. Cryogenically cooled (/spl sim/100 K) Yb:YAG lasers have been previously demonstrated to have relatively low thermooptic effects and high efficiency due to improved material properties at low temperatures. In this...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics Vol. 41; no. 10; pp. 1274 - 1277
Main Authors: Ripin, D.J., Ochoa, J.R., Aggarwal, R.L., Fan, T.Y.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-10-2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermooptic effects often limit the power and beam quality of bulk-solid-state lasers. Cryogenically cooled (/spl sim/100 K) Yb:YAG lasers have been previously demonstrated to have relatively low thermooptic effects and high efficiency due to improved material properties at low temperatures. In this work, >300-W average power with M/sup 2//spl sim/1.2 and 64% optical-optical efficiency has been demonstrated from an end-pumped-rod geometry power oscillator. To our knowledge, this is the highest average power to date from a cryogenically cooled Yb:YAG laser.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2005.855027