Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov. : two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic
Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillu...
Saved in:
Published in: | Archives of microbiology Vol. 171; no. 1; pp. 19 - 30 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Heidelberg
Springer
01-12-1998
Berlin |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillus arsenicoselenatis (strain E1H) is a spore-forming rod that also grew by dissimilatory reduction of Se(VI) to Se(IV). Bacillus selenitireducens (strain MLS10) is a short, non-spore-forming rod that grew by dissimilatory reduction of Se(IV) to Se(0). When the two isolates were cocultured, a complete reduction of Se(VI) to Se(0) was achieved. Both isolates are alkaliphiles and had optimal specific growth rates in the pH range of 8.5-10. Strain E1H had a salinity optimum at 60 g l-1 NaCl, while strain MLS10 had optimal growth at lower salinities (24-60 g l-1 NaCl). Both strains have limited abilities to grow with electron donors and acceptors other than those given above. Strain MLS10 demonstrated weak growth as a microaerophile and was also capable of fermentative growth on glucose, while strain E1H is a strict anaerobe. Comparative 16S rRNA gene sequence analysis placed the two isolates with other Bacillus spp. in the low G+C gram-positive group of bacteria. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s002030050673 |