Structure–activity relationships and molecular modelling of 5-arylidene-2,4-thiazolidinediones active as aldose reductase inhibitors
[Display omitted] The structure–activity relationships (SARs) of 5-arylidene-2,4-thiazolidinediones active as aldose reductase inhibitors (ARIs) were extended by varying the substitution pattern on the 5-arylidene moiety and on N-3. In particular, the introduction of an additional aromatic ring or a...
Saved in:
Published in: | Bioorganic & medicinal chemistry Vol. 13; no. 8; pp. 2809 - 2823 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
15-04-2005
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
The structure–activity relationships (SARs) of 5-arylidene-2,4-thiazolidinediones active as aldose reductase inhibitors (ARIs) were extended by varying the substitution pattern on the 5-arylidene moiety and on N-3. In particular, the introduction of an additional aromatic ring or an H-bond donor group on the 5-benzylidene ring enhanced ALR2 inhibitory potency. Moreover, the presence of a carboxylic anionic chain on N-3 was shown to be an important, although not essential, structural requisite to produce high levels of ALR2 inhibition. The length of this carboxylic chain was critical and acetic acids
4 were the most effective inhibitors among the tested derivatives. Molecular docking simulations into the ALR2 active site accorded with the in vitro inhibition data. They allowed the rationalization of the observed SARs and provided a pharmacophoric model for this class of ARIs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2005.02.026 |