The effect of edge banding thickness of white oak bonded with different adhesives on withdrawal strengths of beech dowels in composite materials

Dowel joints are widely used in furniture frame construction as a load-bearing connection structure, as well as a simple locator for parts. Joints constructed with dowels were subjected to withdrawal, bending, shear, and tensile forces. The aim of this study was to determine the withdrawal strengths...

Full description

Saved in:
Bibliographic Details
Published in:Journal of adhesion science and technology Vol. 21; no. 8; pp. 735 - 744
Main Authors: Uysal, Burhanettin, Kurt, Şeref
Format: Journal Article
Language:English
Published: Taylor & Francis Group 01-01-2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dowel joints are widely used in furniture frame construction as a load-bearing connection structure, as well as a simple locator for parts. Joints constructed with dowels were subjected to withdrawal, bending, shear, and tensile forces. The aim of this study was to determine the withdrawal strengths of 6, 8, 10 mm diameter beech dowels embedded into matching holes drilled into the edges of medium-density fiberboard (MDF) and particleboard (PB) with solid wood edge banding of white oak with 5, 10 and 15 mm thickness, bonded with hot-melt, poly(vinyl acetate) (PVAc) and Desmodur-VTKA (D-VTKA), a polyurethane-based one-component adhesive. The effects of edge banding thickness, dowel dimension, type of composite material and type of adhesive used for edge banding on the withdrawal strength were determined. According to the interaction results from the Duncan test the highest withdrawal strength (7.019 N/mm 2 ) was obtained in beech dowels with 6 mm diameter for MDF with solid wood edge banding of white oak with 10 mm thickness bonded with the hot-melt adhesive. Should the dowels be subjected to withdrawal, it is advised that a beech dowel should be used for MDF with solid oak edge banding with 10 mm thickness bonded with a hot-melt adhesive in furniture production and decoration applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0169-4243
1568-5616
DOI:10.1163/156856107781362626