Identification, characterization and modulation of ferritin-H in the sub-Antarctic Notothenioid Eleginops maclovinus challenged with Piscirickettsia salmonis
Ferritin is a major iron storage protein essential not only in the infectious process, but also in any circumstance generating oxidative stress. In this study, the cDNA coding sequence of ferritin-H was obtained from the sub-Antarctic Notothenioid fish Eleginops maclovinus through transcriptomic ana...
Saved in:
Published in: | Developmental and comparative immunology Vol. 73; pp. 88 - 96 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Ltd
01-08-2017
Elsevier Science Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ferritin is a major iron storage protein essential not only in the infectious process, but also in any circumstance generating oxidative stress. In this study, the cDNA coding sequence of ferritin-H was obtained from the sub-Antarctic Notothenioid fish Eleginops maclovinus through transcriptomic analysis of the head kidney. This sequence contained a 534 bp open reading frame that coded for a 177 amino acid protein with a molecular weight of 20,786.2 Da and a theoretical pI of 5.56. The protein displayed a region of iron putative response elements in the 5′UTR, two putative ferritin iron-binding region signatures, and seven characteristic amino acids with ferroxidase functions. Phylogenetic analysis related this sequence to ferritin-H sequences of other Antarctic Notothenioid fish, sharing 96.61% similarity. Constitutive gene expression analysis in different organs revealed increased ferritin-H gene expression in the gills, spleen, muscle, and liver. After infection with two bacterial strains of Piscirickettsia salmonis (LF-89 and Austral-005), ferritin-H was differentially expressed depending on bacterial strain and tissue. This study provides relevant information towards understanding the iron metabolism of a sub-Antarctic Notothenioid fish.
•Ferritin is a major iron storage protein essential in the infectious process.•Phylogenetic related this sequence to ferritin-H sequences of other Antarctic Notothenioid fish, sharing 96.61% homology.•Ferritin-H was differentially expressed depending on bacterial strain type of P. salmonis and tissue. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0145-305X 1879-0089 |
DOI: | 10.1016/j.dci.2017.03.015 |