Dipeptidase activities in rat brain synaptosomes can be distinguished on the basis of inhibition by bestatin and amastatin : identification of a kyotorphin (Tyr-Arg)-degrading enzyme
The neuropeptide kyotorphin (Tyr-Arg) was degraded by rat brain synaptosomes via a synaptic membrane-bound peptidase which was inhibited by bestatin but not by amastatin. The Km for kyotorphin was 8 x 10(-6) M and the Ki for bestatin was 1 x 10(-7) M. The kyotorphin-degrading enzyme was distinguishe...
Saved in:
Published in: | Neurochemical research Vol. 17; no. 8; pp. 817 - 820 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
Springer
01-08-1992
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The neuropeptide kyotorphin (Tyr-Arg) was degraded by rat brain synaptosomes via a synaptic membrane-bound peptidase which was inhibited by bestatin but not by amastatin. The Km for kyotorphin was 8 x 10(-6) M and the Ki for bestatin was 1 x 10(-7) M. The kyotorphin-degrading enzyme was distinguished from at least one other dipeptide-hydrolyzing activity in synaptosomes which was inhibited by both bestatin and amastatin. Gel permeation chromatography of detergent-extracted synaptosomes resulted in the separation of the dipeptide-hydrolyzing activities. A single kyotorphin-degrading enzyme peak was observed which had a M(r) = 52,000. The activity peak could degrade other dipeptides including Phe-Arg, a synaptic membrane-generated metabolic of bradykinin. The kyotorphin-degrading enzyme appears to be novel and can be distinguished from other known dipeptidases on the basis of substrate specificity, subcellular localization, and inhibition profile. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1007/bf00969018 |