DEVELOPMENTS ON WETTING EFFECTS IN MICROFLUIDIC SLUG FLOW

Wetting effects form a dimension of fluid dynamics that becomes predominant, precisely controllable, and possibly useful at the micro-scale. Microfluidic multiphase flow patterns, including size, shape, and velocity of fluidic particles, and mass and heat transfer rates are affected by wetting prope...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering communications Vol. 199; no. 12; pp. 1626 - 1641
Main Authors: Santos, R. M., Kawaji, M.
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis Group 01-12-2012
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wetting effects form a dimension of fluid dynamics that becomes predominant, precisely controllable, and possibly useful at the micro-scale. Microfluidic multiphase flow patterns, including size, shape, and velocity of fluidic particles, and mass and heat transfer rates are affected by wetting properties of microchannel walls and surface tension forces between fluid phases. The novelty of this field, coupled to difficulties in experimental design and measurements, means that literature results are scarce and scientific understanding is incomplete. Numerical methods developed recently have enabled a shortcut in obtaining results that can be perceived as realistic and that offer insight otherwise not possible. In this work the effect of the contact angle on gas-liquid two-phase flow slug formation in a microchannel T-junction was studied by numerical simulation. The contact angle, varied from 0 to 140 degrees, influenced the interaction of the gas and liquid phases with the channel wall, affecting the shape, size, and velocity of the slugs. The visualisation of the cross-sectional area of gas slugs allowed insight into the existence of liquid flow along rectangular microchannel corners, which was affected by the contact angle and determined the occurrence of velocity slip. The velocity profile within the gas slugs was also found to change as a function of contact angle, with hydrophilic channels inducing greater internal circulation, compared to greater channel wall contact in the case of hydrophobic channels. These effects play a role in heat and mass transfer from channel walls and highlight the value of numeral simulation in microfluidic design. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Chemical Engineering Communications to view the supplemental file.
ISSN:0098-6445
1563-5201
DOI:10.1080/00986445.2012.660712