VERITAS Observations of the Galactic Center Region at Multi-TeV Gamma-Ray Energies
Abstract The Galactic Center (GC) region hosts a variety of powerful astronomical sources and rare astrophysical processes that emit a large flux of nonthermal radiation. The inner 375 pc × 600 pc region, called the Central Molecular Zone, is home to the supermassive black hole Sagittarius A*, massi...
Saved in:
Published in: | The Astrophysical journal Vol. 913; no. 2; pp. 115 - 125 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
The American Astronomical Society
01-06-2021
IOP Publishing |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
The Galactic Center (GC) region hosts a variety of powerful astronomical sources and rare astrophysical processes that emit a large flux of nonthermal radiation. The inner 375 pc × 600 pc region, called the Central Molecular Zone, is home to the supermassive black hole Sagittarius A*, massive cloud complexes, and particle accelerators such as supernova remnants (SNRs). We present the results of our improved analysis of the very-high-energy gamma-ray emission above 2 TeV from the GC using 125 hr of data taken with the Very Energetic Radiation Imaging Telescope Array System imaging-atmospheric Cerenkov telescope between 2010 and 2018. The central source VER J1745–290, consistent with the position of Sagittarius A*, is detected at a significance of 38 standard deviations above the background level (38
σ
), and we report its spectrum and light curve. Its differential spectrum is consistent with a power law with exponential cutoff, with a spectral index of
, a flux normalization at 5.3 TeV of
TeV
−1
cm
−2
s
−1
, and cutoff energy of
TeV. We also present results on the diffuse emission near the GC, obtained by combining data from multiple regions along the GC ridge, which yield a cumulative significance of 9.5
σ
. The diffuse GC ridge spectrum is best fit by a power law with a hard index of 2.19 ± 0.20, showing no evidence of a cutoff up to 40 TeV. This strengthens the evidence for a potential accelerator of PeV cosmic rays being present in the GC. We also provide spectra of the other sources in our field of view with significant detections, composite SNR G0.9+0.1, and HESS J1746–285. |
---|---|
Bibliography: | AAS28029 High-Energy Phenomena and Fundamental Physics |
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/abf926 |