Investigating the uptake and fate of per- and polyfluoroalkylated substances (PFAS) in bean plants (Phaseolus vulgaris): comparison between target MS and sum parameter analysis via HR-CS-GFMAS
In this study, we present a screening method based on molecular absorption spectrometry to study PFAS uptake and fate in plants. To evaluate the suitability of this method we analyzed plant extracts with molecular absorption spectrometry (MAS) as well as liquid chromatography–tandem mass spectrometr...
Saved in:
Published in: | Environmental sciences Europe Vol. 35; no. 1; pp. 104 - 13 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
21-11-2023
Springer Nature B.V SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we present a screening method based on molecular absorption spectrometry to study PFAS uptake and fate in plants. To evaluate the suitability of this method we analyzed plant extracts with molecular absorption spectrometry (MAS) as well as liquid chromatography–tandem mass spectrometry (LC–MS/MS) for mass balance studies (
w
(
F
)). French bean plants (
Phaseolus vulgaris
) were grown on soil spiked using eight PFAS substances that vary in chain length and functional group composition. Specifically, these include three short-chained (C4–C5), five long-chained (C7–C10) carboxylic acids, one sulfonic acid and one sulfonic amide moieties. To investigate substance-specific PFAS uptake systematically, PFAS were spiked as single substance spike. Additionally, we studied one mixture of the investigated substances in equal proportions regarding
w
(
F
) and four PFAS mixtures of unknown composition. After 6 weeks, the plants were separated into four compartments. We analyzed the four compartments as well as the soil for extractable organically bound fluorine (EOF) by high resolution-continuum source-graphite furnace-molecular absorption spectrometry (HR-CS-GFMAS) as well as for sum of ten target-PFAS by LC–MS/MS. All three short-chained PFAS perfluorobutanoic acid (PFBA), perfluorobutanoic sulfonic acid (PFBS) and perfluoropentanoic acid (PFPeA) were determined in high concentrations mainly in the fruits of the investigated plants while long-chained PFAS perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were mainly determined in roots. PFBS was determined in remarkably high concentrations in leaves compartment by both quantification methods. Overall, comprehensive results of single substance spikes were in good agreement for both methods except for a few cases. Hence, two phenomena were identified: for mixed PFAS spikes of unknown composition huge differences between EOF and sum of target PFAS were observed with systematically higher EOF values. Overall, both methods indicate comparable results with MS being more reliable for known PFAS contamination and MAS being more valuable to identify PFAS exposure of unknown composition.
Graphical Abstract |
---|---|
ISSN: | 2190-4715 2190-4715 |
DOI: | 10.1186/s12302-023-00811-7 |