Field Performance of Disease-Free Plants of Ginger Produced by Tissue Culture and Agronomic, Cytological, and Molecular Characterization of the Morphological Variants
Ginger (Zingiber officinale Rosc.) is an important spice crop valued for its flavored and medical properties. It is susceptible to soil-borne diseases, which can cause considerable economic loss to growers. In vitro culture is feasible for the propagation of disease-free ginger plants, but has sever...
Saved in:
Published in: | Agronomy (Basel) Vol. 13; no. 1; p. 74 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ginger (Zingiber officinale Rosc.) is an important spice crop valued for its flavored and medical properties. It is susceptible to soil-borne diseases, which can cause considerable economic loss to growers. In vitro culture is feasible for the propagation of disease-free ginger plants, but has several disadvantages when producing seed rhizomes that can be commercially used, such as long cultivation cycles (usually 2–3 years) and occurrence of somaclonal variation. In this study, dynamic changes in the morphological characteristics of in vitro-propagated disease-free plants of ‘Wuling’ ginger were evaluated by continuous observation and measurement at 30-day intervals, and morphological variants were screened and characterized by agronomic, cytological, and molecular analysis at harvest. Results showed that the plants grew rapidly within 120 days after planting, and the most active growth period was from 60 to 120 days. Eight plants with clear and stable morphological differences were screened out from approximately 2000 plants grown in the field, and they could be classified into two groups (VT1 and VT2) based on tiller number, plant height, leaf color, and leaf shape. By flow cytometry analysis and chromosome counting, the VT1 was confirmed to be diploid, with the shortest plant height, the largest number of tillers and rhizome knobs, and the smallest tiller diameter and rhizome size among the three types of plants. The VT2 was mixoploid, consisting of diploid and tetraploid cells, with significantly reduced tiller number and rhizome knobs, significantly larger stomatal guard cells/apertures, and significantly lower stomatal density. SSR analysis detected DNA band profile changes in six out of the eight variants, including one plant of the VT1 and all the VT2 plants. The findings of this study might contribute to the commercial production of disease-free seed rhizomes in ginger, and the characterized somaclonal variants could provide useful germplasm resources for future breeding. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy13010074 |