Inhibition of 2-AG hydrolysis alleviates posttraumatic headache attributed to mild traumatic brain injury

Background Posttraumatic headache (PTH) is a common and debilitating symptom following repetitive mild traumatic brain injury (rmTBI), and it mainly resembles a migraine-like phenotype. While modulation of the endocannabinoid system (ECS) is effective in treating TBI and various types of pain includ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of headache and pain Vol. 25; no. 1; pp. 115 - 15
Main Authors: Wen, Jie, Tanaka, Mikiei, Zhang, Yumin
Format: Journal Article
Language:English
Published: Milan Springer Milan 16-07-2024
Springer Nature B.V
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Posttraumatic headache (PTH) is a common and debilitating symptom following repetitive mild traumatic brain injury (rmTBI), and it mainly resembles a migraine-like phenotype. While modulation of the endocannabinoid system (ECS) is effective in treating TBI and various types of pain including migraine, the role of augmentation of endocannabinoids in treating PTH has not been investigated. Methods Repetitive mild TBI was induced in male C57BL/6J mice using the non-invasive close-head impact model of engineered rotational acceleration (CHIMERA). Periorbital allodynia was assessed using von Frey filaments and determined by the “Up-Down” method. Immunofluorescence staining was employed to investigate glial cell activation and calcitonin gene-related peptide (CGRP) expression in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC) of the rmTBI mice. Levels of 2-arachidonoyl glycerol (2-AG), anandamide (AEA), and arachidonic acid (AA) in the TG, medulla (including TNC), and periaqueductal gray (PAG) were measured by mass spectrometry. The therapeutic effect of endocannabinoid modulation on PTH was also assessed. Results The rmTBI mice exhibited significantly increased cephalic pain hypersensitivity compared to the sham controls. MJN110, a potent and selective inhibitor of the 2-AG hydrolytic enzyme monoacylglycerol lipase (MAGL), dose-dependently attenuated periorbital allodynia in the rmTBI animals. Administration of CGRP at 0.01 mg/kg reinstated periorbital allodynia in the rmTBI animals on days 33 and 45 post-injury but had no effect in the sham and MJN110 treatment groups. Activation of glial cells along with increased production of CGRP in the TG and TNC at 7 and 14 days post-rmTBI were attenuated by MJN110 treatment. The anti-inflammatory and anti-nociceptive effects of MJN110 were partially mediated by cannabinoid receptor activation, and the pain-suppressive effect of MJN110 was completely blocked by co-administration of DO34, an inhibitor of 2-AG synthase. The levels of 2-AG in TG, TNC and PAG were decreased in TBI animals, significantly elevated and further reduced by the selective inhibitors of 2-AG hydrolytic and synthetic enzymes, respectively. Conclusion Enhancing endogenous levels of 2-AG appears to be an effective strategy for the treatment of PTH by attenuating pain initiation and transmission in the trigeminal pathway and facilitating descending pain inhibitory modulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1129-2377
1129-2369
1129-2377
DOI:10.1186/s10194-024-01817-z