Comparing the Relative Role of Perforin/Granzyme Versus Fas/Fas Ligand Cytotoxic Pathways in CD8+ T Cell-Mediated Insulin-Dependent Diabetes Mellitus

CD8+ cytotoxic T cells play a critical role in initiating insulin-dependent diabetes mellitus. The relative contribution of each of the major cytotoxic pathways, perforin/granzyme and Fas/Fas ligand (FasL), in the induction of autoimmune diabetes remains controversial. To evaluate the role of each l...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) Vol. 163; no. 8; pp. 4335 - 4341
Main Authors: Kreuwel, Huub T. C, Morgan, David J, Krahl, Troy, Ko, Alice, Sarvetnick, Nora, Sherman, Linda A
Format: Journal Article
Language:English
Published: United States Am Assoc Immnol 15-10-1999
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CD8+ cytotoxic T cells play a critical role in initiating insulin-dependent diabetes mellitus. The relative contribution of each of the major cytotoxic pathways, perforin/granzyme and Fas/Fas ligand (FasL), in the induction of autoimmune diabetes remains controversial. To evaluate the role of each lytic pathway in beta cell lysis and induction of diabetes, we have used a transgenic mouse model in which beta cells expressing the influenza virus hemagglutinin (HA) are destroyed by HA-specific CD8+ T cells from clone-4 TCR-transgenic mice. Upon adoptive transfer of CD8+ T cells from perforin-deficient clone-4 TCR mice, there was a 30-fold increase in the number of T cells required to induce diabetes. In contrast, elimination of the Fas/FasL pathway of cytotoxicity had little consequence. When both pathways of cytolysis were eliminated, mice did not become diabetic. Using a model of spontaneous diabetes, which occurs in double transgenic neonates that express both clone-4 TCR and Ins-HA transgenes, mice deficient in either the perforin or FasL/Fas lytic pathway become diabetic soon after birth. This indicates that, in the neonate, large numbers of autoreactive CD8+ T cells can lead to destruction of islet beta cells by either pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.163.8.4335