The extended Weibull–Fréchet distribution: properties, inference, and applications in medicine and engineering
In this paper, a flexible version of the Fréchet distribution called the extended Weibull–Fréchet (EWFr) distribution is proposed. Its failure rate has a decreasing shape, an increasing shape, and an upside-down bathtub shape. Its density function can be a symmetric shape, an asymmetric shape, a rev...
Saved in:
Published in: | AIMS mathematics Vol. 7; no. 1; pp. 225 - 246 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
AIMS Press
01-01-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a flexible version of the Fréchet distribution called the extended Weibull–Fréchet (EWFr) distribution is proposed. Its failure rate has a decreasing shape, an increasing shape, and an upside-down bathtub shape. Its density function can be a symmetric shape, an asymmetric shape, a reversed-J shape and J shape. Some mathematical properties of the EWFr distribution are explored. The EWFr parameters are estimated using several frequentist estimation approaches. The performance of these methods is addressed using detailed simulations. Furthermore, the best approach for estimating the EWFr parameters is determined based on partial and overall ranks. Finally, the performance of the EWFr distribution is studied using two real-life datasets from the medicine and engineering sciences. The EWFr distribution provides a superior fit over other competing Fréchet distributions such as the exponentiated-Fréchet, beta-Fréchet, Lomax–Fréchet, and Kumaraswamy Marshall–Olkin Fréchet. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022014 |