High-throughput methods for measuring heparanase activity and screening potential antimetastatic and anti-inflammatory agents
Heparanase plays an important role in the degradation of the extracellular matrix. It is implicated in inflammation, tumor angiogenesis and metastasis. We have developed two high-throughput methods for measuring heparanase activity and screening potential inhibitors. The first method involves coatin...
Saved in:
Published in: | Analytical biochemistry Vol. 333; no. 2; pp. 389 - 398 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
15-10-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heparanase plays an important role in the degradation of the extracellular matrix. It is implicated in inflammation, tumor angiogenesis and metastasis. We have developed two high-throughput methods for measuring heparanase activity and screening potential inhibitors. The first method involves coating fibroblast growth factor (FGF) on microtiter plates and capturing fluorescein isothiocyanate (FITC)-labeled heparin sulfate (HS), which is used as a substrate for heparanase digestion. Labeled HS fragments are released into the medium and quantitated by fluorescence intensity measurement. We have implemented this assay method into a Zeiss uHTS system and screened compound libraries for heparanase inhibitors. The second method involves labeling HS with biotin followed by FITC to generate a dual-labeled HS. The labeled material is bound to streptavidin-coated plates and used as a substrate for heparanase digestion. Both methods are sensitive and easily applicable to robotic systems. In addition, we have labeled both HS and biotin-HS with Eu-chelate, a fluorophore that exhibits long decay fluorescence. Assays using Eu-labeled HS and Eu-labeled biotin-HS have been developed and show higher sensitivity than those using FITC-labeled material. Furthermore, assays using Eu-chelate HS (or biotin-HS) should eliminate the interference of fluorescence compounds. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0003-2697 1096-0309 |
DOI: | 10.1016/j.ab.2004.06.023 |