The use of PBPK/PD to establish clinically relevant dissolution specifications for zolpidem immediate release tablets

Zolpidem is a non-benzodiazepine hypnotic agent which has been shown to be effective in inducing and maintaining sleep in adults and is one of the most frequently prescribed hypnotics in the world. For drugs that are used to treat sleeping disorders, the time to reach the maximum concentration (Tmax...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutical sciences Vol. 155; p. 105534
Main Authors: Paraiso, Rafael L.M., Rose, Rachel H., Fotaki, Nikoletta, McAllister, Mark, Dressman, Jennifer B.
Format: Journal Article
Language:English
Published: Elsevier B.V 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zolpidem is a non-benzodiazepine hypnotic agent which has been shown to be effective in inducing and maintaining sleep in adults and is one of the most frequently prescribed hypnotics in the world. For drugs that are used to treat sleeping disorders, the time to reach the maximum concentration (Tmax) of the drug in plasma is important to achieving a fast onset of action and this must be maintained when switching from one product to another. The main objective of the present work was to create a PBPK/PD model for zolpidem and establish a clinically relevant “safe space” for dissolution of zolpidem from the commercial immediate release (IR) formulation. A second objective was to analyze literature pharmacokinetic data to verify the negative food effect ascribed to zolpidem and consider its ramifications in terms of the “safe space” for dissolution. Using dissolution, pharmacokinetic and pharmacodynamic data, an integrated PBPK/PD model for immediate release zolpidem tablets was constructed in Simcyp®. This model was used to identify the clinically relevant dissolution specifications necessary to ensure efficacy. According to the simulations, as long as 85% of the drug is released in 45 minutes or less, the impact on the PK and PD profiles of zolpidem would be minimal. According to the FDA, the drug has to dissolve from the test and reference products at a similar rate and to an extent of 85% in not more than 30 minutes to pass bioequivalence via the BCS-biowaiver test. Thus, the BCS-biowaiver specifications are somewhat more stringent than the “safe space” based on the PBPK/PD model. Published data from fasted and fed state pharmacokinetic studies suggest but do not prove a negative food effect of zolpidem. A PBPK/PD model indicates that current BCS-biowaiver criteria are more restrictive for immediate release zolpidem tablets than they need to be. In view of the close relationship between PK and PD, it remains advisable to avoid taking zolpidem tablets with or immediately after a meal, as indicated by the Stilnox® labeling. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0928-0987
1879-0720
DOI:10.1016/j.ejps.2020.105534