Genomic Landscape of Branchio-Oto-Renal Syndrome through Whole-Genome Sequencing: A Single Rare Disease Center Experience in South Korea

Branchio-oto-renal (BOR) and branchio-otic (BO) syndromes are characterized by anomalies affecting the ears, often accompanied by hearing loss, as well as abnormalities in the branchial arches and renal system. These syndromes exhibit a broad spectrum of phenotypes and a complex genomic landscape, w...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences Vol. 25; no. 15; p. 8149
Main Authors: Cho, Sung Ho, Jeong, Sung Ho, Choi, Won Hoon, Lee, Sang-Yeon
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Branchio-oto-renal (BOR) and branchio-otic (BO) syndromes are characterized by anomalies affecting the ears, often accompanied by hearing loss, as well as abnormalities in the branchial arches and renal system. These syndromes exhibit a broad spectrum of phenotypes and a complex genomic landscape, with significant contributions from the gene and the gene family, including and . Due to their diverse phenotypic presentations, which can overlap with other genetic syndromes, molecular genetic confirmation is essential. As sequencing technologies advance, whole-genome sequencing (WGS) is increasingly used in rare disease diagnostics. We explored the genomic landscape of 23 unrelated Korean families with typical or atypical BOR/BO syndrome using a stepwise approach: targeted panel sequencing and exome sequencing (Step 1), multiplex ligation-dependent probe amplification (MLPA) with copy number variation screening (Step 2), and WGS (Step 3). Integrating WGS into our diagnostic pipeline detected structure variations, including cryptic inversion and complex genomic rearrangement, eventually enhancing the diagnostic yield to 91%. Our findings expand the genomic architecture of BOR/BO syndrome and highlight the need for WGS to address the genetic diagnosis of clinically heterogeneous rare diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25158149