Intracellular localization of nicotinic acetylcholine receptors in human cell lines
Previously we demonstrated that mouse liver mitochondria express functional α7 nicotinic acetylcholine receptors (nAChRs). The aim of this study was to investigate whether the nAChRs are found in mitochondria of non-neuronal human cell lines. Three cell lines: U373 (astrocytes), U937 (monocytes) and...
Saved in:
Published in: | Life sciences (1973) Vol. 91; no. 21-22; pp. 1033 - 1037 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Inc
27-11-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previously we demonstrated that mouse liver mitochondria express functional α7 nicotinic acetylcholine receptors (nAChRs). The aim of this study was to investigate whether the nAChRs are found in mitochondria of non-neuronal human cell lines.
Three cell lines: U373 (astrocytes), U937 (monocytes) and Daudi (B lymphocytes) were examined by flow cytometry, Cell ELISA and fluorescent confocal microscopy using the antibodies against extracellular epitopes of α3, α4, α7, α9, β2 and β4 nAChR subunits.
It is shown that the studied cells expressed different sets of nAChR subunits on the plasma membrane suggesting the presence of α7 nAChRs on all cells, of α3β4 nAChRs on U373 cells and of α4β2/α4β4 nAChRs on U937 cells. In addition to nAChRs exposed on the surface, all cells contained a considerable intracellular pool of α3- and α7-containing nAChRs. The binding of α3-, α7- and β4-specific antibodies partially overlapped with that of mitochondrial outer membrane translocase-specific antibody. Binding of α7-specific antibody also overlapped with that of MitoTracker Green, which binds to active mitochondria.
The data obtained suggest that a part of intracellular α3β4 and α7 nAChRs in U373, U937 and Daudi cells is located on mitochondria. This finding complements our previous observation of α7 nAChRs in mouse liver mitochondria and reveals new intracellular targets for cholinergic regulation. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.lfs.2012.02.005 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2012.02.005 |