External stimuli controlled multiferroic charge-transfer crystals

Multiferroic charge-transfer crystals have drawn significant interest due to their simultaneous dipolar and spin ordering. Numerous theoretical and experimental studies have shown that the molecular stacking between donor and acceptor complexes plays an important role in tuning charge-transfer enabl...

Full description

Saved in:
Bibliographic Details
Published in:Nano research Vol. 9; no. 4; pp. 925 - 932
Main Authors: Qin, Wei, Chen, Xiaomin, Lohrman, Jessica, Gong, Maogang, Yuan, Guoliang, Wuttig, Manfred, Ren, Shenqiang
Format: Journal Article
Language:English
Published: Beijing Tsinghua University Press 01-04-2016
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiferroic charge-transfer crystals have drawn significant interest due to their simultaneous dipolar and spin ordering. Numerous theoretical and experimental studies have shown that the molecular stacking between donor and acceptor complexes plays an important role in tuning charge-transfer enabled multifunctionality. Herein, we show that the charge-transfer interactions can be controlled by the segregated stack, consisting of polythiophene donor- and fuUerene acceptor-based all-conjugated block copolymers. Room temperature magnetic field effects, ferroelectricity, and anisotropic magnetism are observed in charge-transfer crystals, which can be further controlled by photoexcitation and charge doping. Furthermore, the charge-transfer segregated stack crystals demonstrate external stimuli controlled polarization and magnetization, which opens up their multifunctional applications for all-organic multiferroics.
Bibliography:11-5974/O4
organic multiferroics,charge-transfer,room temperature,block copolymer
Multiferroic charge-transfer crystals have drawn significant interest due to their simultaneous dipolar and spin ordering. Numerous theoretical and experimental studies have shown that the molecular stacking between donor and acceptor complexes plays an important role in tuning charge-transfer enabled multifunctionality. Herein, we show that the charge-transfer interactions can be controlled by the segregated stack, consisting of polythiophene donor- and fuUerene acceptor-based all-conjugated block copolymers. Room temperature magnetic field effects, ferroelectricity, and anisotropic magnetism are observed in charge-transfer crystals, which can be further controlled by photoexcitation and charge doping. Furthermore, the charge-transfer segregated stack crystals demonstrate external stimuli controlled polarization and magnetization, which opens up their multifunctional applications for all-organic multiferroics.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-015-0975-8