Flexible, Biocompatible PET Sheets: A Platform for Attachment, Proliferation and Differentiation of Eukaryotic Cells
Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ ge...
Saved in:
Published in: | Surfaces (Basel) Vol. 4; no. 4; pp. 306 - 322 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-12-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ generated diazonium cation precursor. The arylated sheets served as macro-hydrogen donors for benzophenone and the growth of poly(2-hydroxy ethyl methacrylate) (PHEMA) top layer by surface-confined free radical photopolymerization. The PET-PHEMA sheets were further grafted with fibronectin (FBN) through the 1,1-carbonyldiimidazole coupling procedure. The bioactive PET-PHEMA-I-FBN was then employed as a platform for the attachment, proliferation and differentiation of eukaryotic cells which after a few days gave remarkable muscle fibers, of ~120 µm length and ~45 µm thickness. We demonstrate that PET-PHEMA yields a fast growth of cells followed by muscle fibers of excellent levels of differentiation compared to pristine PET or standard microscope glass slides. The positive effect is exacerbated by crosslinking PHEMA chains with ethylene glycol dimethacrylate at initial HEMA/EGDA concentration ratio = 9/1. This works conclusively shows that in situ generated diazonium salts provide aryl layers for the efficient UV-induced grafting of biocompatible coating that beneficially serve as platform for cell attachment and growth of muscle fibers. |
---|---|
ISSN: | 2571-9637 2571-9637 |
DOI: | 10.3390/surfaces4040026 |