Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography

Automatically delineating the deep and superficial aponeurosis of the skeletal muscles from ultrasound images is important in many aspects of the clinical routine. In particular, finding muscle parameters, such as thickness, fascicle length or pennation angle, is a time-consuming clinical task requi...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 14; p. 5230
Main Authors: Katakis, Sofoklis, Barotsis, Nikolaos, Kakotaritis, Alexandros, Economou, George, Panagiotopoulos, Elias, Panayiotakis, George
Format: Journal Article
Language:English
Published: Basel MDPI AG 13-07-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Automatically delineating the deep and superficial aponeurosis of the skeletal muscles from ultrasound images is important in many aspects of the clinical routine. In particular, finding muscle parameters, such as thickness, fascicle length or pennation angle, is a time-consuming clinical task requiring both human labour and specialised knowledge. In this study, a multi-step solution for automating these tasks is presented. A process to effortlessly extract the aponeurosis for automatically measuring the muscle thickness has been introduced as a first step. This process consists mainly of three parts. In the first part, the Attention UNet has been incorporated to automatically delineate the boundaries of the studied muscles. Afterwards, a specialised post-processing algorithm was utilised to improve (and correct) the segmentation results. Lastly, the calculation of the muscle thickness was performed. The proposed method has achieved similar to a human-level performance. In particular, the overall discrepancy between the automatic and the manual muscle thickness measurements was equal to 0.4 mm, a significant result that demonstrates the feasibility of automating this task. In the second step of the proposed methodology, the fascicle’s length and pennation angle are extracted through an unsupervised pipeline. Initially, filtering is applied to the ultrasound images to further distinguish the tissues from the other muscle structures. Later, the well-known K-Means algorithm is used to isolate them successfully. As the last step, the dominant angle of the segmented muscle tissues is reported and compared with manual measurements. The proposed pipeline is showing very promising results in the evaluated dataset. Specifically, in the calculation of the pennation angle, the overall discrepancy between the automatic and the manual measurements was less than 2.22° (degrees), once more comparable with the human-level performance. Finally, regarding the fascicle length measurements, the results were divided based on the muscle properties. In the muscles where a large portion (or all) of the fascicles are located between the upper and lower aponeuroses, the proposed pipeline exhibits superb performance; otherwise, overall accuracy deteriorates due to errors caused by the trigonometric approximations needed for the length calculation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22145230