Mast Cell Tryptase Release Contributes to Disease Progression in Lymphangioleiomyomatosis
Lymphangioleiomyomatosis is a multisystem disease causing lung cysts and respiratory failure. Loss of tuberous sclerosis complex (TSC) gene function results in a clone of 'LAM cells' with dysregulated mTOR activity. LAM cells and fibroblasts form lung nodules that also contain mast cells a...
Saved in:
Published in: | American journal of respiratory and critical care medicine Vol. 204; no. 4; pp. 431 - 444 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Thoracic Society
15-08-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lymphangioleiomyomatosis is a multisystem disease causing lung cysts and respiratory failure. Loss of tuberous sclerosis complex (TSC) gene function results in a clone of 'LAM cells' with dysregulated mTOR activity. LAM cells and fibroblasts form lung nodules that also contain mast cells although their significance is unknown.
To understand the mechanism of mast cell accumulation and their role in the pathogenesis of LAM. Methods, Measurements and Main Results: Transcriptional profiling, quantitative RT-PCR and ELISA showed that LAM derived cell / fibroblast co-cultures induced multiple CXC chemokines in fibroblasts. Compared with normal tissue, LAM lungs had increased tryptase positive mast cells expressing CXC chemokine receptors (p<0.05). Mast cells located around the periphery of LAM nodules were positively associated with rate of lung function loss (p=0.016). In vitro, LAM spheroid TSC2 null cell / fibroblast co-cultures attracted mast cells, which was inhibited by pharmacologic and CRISPR-cas9 inhibition of CXCR1 and 2. LAM spheroids caused mast cell tryptase release, which induced fibroblast proliferation and increased LAM spheroid size (1.36±0.24 fold, p=0.0019). The tryptase inhibitor APC366 and sodium cromoglycate inhibited mast cell induced spheroid growth. Using an immuno-competent Tsc2 null murine homograft model, sodium cromoglycate markedly reduced mast cell activation and Tsc2 null lung tumour burden (vehicle: 32.5.3%±23.6 and cromoglycate: 5.5%±4.3. p=0.0035).
LAM cell / fibroblast interactions attract mast cells where tryptase release contributes to disease progression. Repurposing sodium cromoglycate for use in LAM should be studied as an alternative or adjunct to mTOR inhibitor therapy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1073-449X 1535-4970 |
DOI: | 10.1164/rccm.202007-2854OC |