Glucose microfluidic fuel cell based on silver bimetallic selective catalysts for on-chip applications
A glucose microfluidic fuel cell with outstanding performance at zero flow condition is presented. Polarization tests showed that bimetallic materials based in silver (AuAg/C as anode, PtAg/C as cathode) exhibit tolerance to byproducts and crossover effect. This allowed achieving one of the highest...
Saved in:
Published in: | Journal of power sources Vol. 216; pp. 297 - 303 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
15-10-2012
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A glucose microfluidic fuel cell with outstanding performance at zero flow condition is presented. Polarization tests showed that bimetallic materials based in silver (AuAg/C as anode, PtAg/C as cathode) exhibit tolerance to byproducts and crossover effect. This allowed achieving one of the highest power densities reported for glucose fuel cells, up to a value of 630 μW cm−2 using two separated laminar flows of reactants. Furthermore, the tolerance to crossover effect caused by the selectivity of PtAg/C to oxygen reduction reaction in presence of glucose permitted using a single flow containing a mixture of glucose/oxygen, yielding a performance as high as 270 μW cm−2. Microfluidic fuel cell was further evaluated with a simulated body fluid solution that contained salts commonly present in the human blood plasma, reaching a power of 240 μW cm−2 at zero flow. These results envisage the incorporation of this fuel cell as a portable power source in Lab-on-a-Chip devices without the need of external pumps.
► Glucose microfuel cell with outstanding performance at zero flow condition is showed. ► Bimetallic materials based on Ag exhibit tolerance to byproducts and crossover effect. ► Microfluidic fuel cell was evaluated with a simulated body fluid solution at zero flow. ► This fuel cell can be used as a portable power source in Lab-on-a-Chip applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2012.05.101 |