Local administration of curcumin-loaded nanoparticles enhances periodontal repair in vivo
The aim was to assess the influence of local application of curcumin-loaded nanoparticles on an experimental model of periodontal repair. Periodontitis was induced by ligatures on both lower first molars of rats. After 15 days, ligatures were removed (“treatment”) and animals were randomly allocated...
Saved in:
Published in: | Naunyn-Schmiedeberg's archives of pharmacology Vol. 396; no. 2; pp. 311 - 321 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-02-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim was to assess the influence of local application of curcumin-loaded nanoparticles on an experimental model of periodontal repair. Periodontitis was induced by ligatures on both lower first molars of rats. After 15 days, ligatures were removed (“treatment”) and animals were randomly allocated to three experimental groups (
n
= 8/group): (i) 0.05 mg/ml curcumin-loaded nanoparticles, (ii) empty nanoparticles (vehicle control), and (iii) sterile saline (negative control). Experimental treatments were administered locally on days 0, 3, 5, 7, 9, and 11 after ligature removal. Animals were euthanized at 7 and 14 days. Bone repair was assessed by microcomputer tomography (µCT). Histological sections were stained with hematoxylin/eosin (H/E), Picrosirius Red, and Masson’s trichrome. Expression of Runx-2 was studied by immunohistochemistry. Gene expression of
Itgam
,
Arg1
, and
Inos
was assessed by RT-qPCR. At 7 days, there was increased gene expression of
Itgam
and
Arg1
and of the relative expression of
Arg1/Inos
in curcumin-treated animals, but no difference in any other outcomes. At 14 days, curcumin-loaded nanoparticles significantly increased bone repair and collagen content, as well as the number of osteocytes, percentage of extracellular matrix, and expression of Runx2. The results demonstrate that local administration of curcumin-loaded nanoparticles enhanced tissue repair in an experimental model of periodontal repair. Nanoparticle-encapsulated curcumin enhances early post-treatment repair of periodontal tissues. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0028-1298 1432-1912 |
DOI: | 10.1007/s00210-022-02310-7 |