A comparison of laparoscopic and robotic ergonomic risk

Introduction Work related injuries in minimally invasive surgery (MIS) are common because of the strains placed on the surgeon’s or assistant’s body. The objective of this study was to compare specific ergonomic risks among surgeons and surgical trainees performing robotic and laparoscopic procedure...

Full description

Saved in:
Bibliographic Details
Published in:Surgical endoscopy Vol. 36; no. 11; pp. 8397 - 8402
Main Authors: Monfared, Sara, Athanasiadis, Dimitrios I., Umana, Luke, Hernandez, Edward, Asadi, Hamed, Colgate, Cameron L., Yu, Denny, Stefanidis, Dimitrios
Format: Journal Article
Language:English
Published: New York Springer US 01-11-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction Work related injuries in minimally invasive surgery (MIS) are common because of the strains placed on the surgeon’s or assistant’s body. The objective of this study was to compare specific ergonomic risks among surgeons and surgical trainees performing robotic and laparoscopic procedures. Materials and methods Ergonomic data and discomfort questionnaires were recorded from surgeons and trainees (fellows/residents) for both robotic and laparoscopic procedures. Perceived discomfort questionnaires were recorded pre/postoperatively. Intraoperatively, biomechanical loads were captured using motion tracking sensors and electromyography (EMG) sensors. Perceived discomfort, body position and muscle activity were compared between robotic and laparoscopic procedures using a linear regression model. Results Twenty surgeons and surgical trainees performed 29 robotic and 48 laparoscopic procedures. Postoperatively, increases in right finger numbness and right shoulder stiffness and surgeon irritability were noted after laparoscopy and increased back stiffness after robotic surgery. Further, the laparoscopic group saw increases in right hand/shoulder pain (OR 0.8; p = 0.032) and left hand/shoulder pain (0.22; p < 0.001) compared to robotic. Right deltoid and trapezius excessive muscle activity were significantly higher in laparoscopic operations compared to robotic. Demanding and static positioning was similar between the two groups except there was significantly more static neck position required for robotic operations. Conclusion Robotic assisted surgeries led to lower postoperative discomfort and muscle strain in both upper extremities, particularly dominant side of the surgeon, but increased static neck positioning with subjective back stiffness compared with laparoscopy. These recognized ergonomic differences between the two platforms can be used to raise surgeon awareness of their intraoperative posture and to develop targeted physical and occupational therapy interventions to decrease surgeon WMSDs and increase surgeon longevity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0930-2794
1432-2218
DOI:10.1007/s00464-022-09105-0