The Plant Growth-Promoting Bacteria Strain Bacillus mojavensis I4 Enhanced Salt Stress Tolerance in Durum Wheat

Plant growth and production are adversely affected by soil salinity. A plant growth-promoting bacteria (PGPB) designated as the “I4 strain” of Bacillus mojavensis was isolated from Tunisian soil (Sfax, Tunisia) and showed the ability to be grown in the presence of NaCl concentrations ranging from 0...

Full description

Saved in:
Bibliographic Details
Published in:Current microbiology Vol. 80; no. 5; p. 178
Main Authors: Ghazala, Imen, Chiab, Nour, Saidi, Mohamed Najib, Gargouri-Bouzid, Radhia
Format: Journal Article
Language:English
Published: New York Springer US 01-05-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant growth and production are adversely affected by soil salinity. A plant growth-promoting bacteria (PGPB) designated as the “I4 strain” of Bacillus mojavensis was isolated from Tunisian soil (Sfax, Tunisia) and showed the ability to be grown in the presence of NaCl concentrations ranging from 0 to 10% in Luria Bertani (LB) medium. The PGPB-mediated salt tolerance in durum wheat was evaluated. The physiological parameters such as growth, shoot and root length, dry and fresh weight were higher in I4-inoculated wheat plants in comparison with non-treated plants under salt stress. Results showed that this strain promoted wheat growth and preserved the membrane damage by notably lowering the electrolytes leakage and malondialdehyde content in contrast to non-inoculated plants. Moreover, leaf chlorophyll content, biochemical parameters and antioxidant enzyme activities measurement showed a better salt and heavy metal stress adaptation of the I4-inoculated plants. Due to these outcomes, it could be suggested that the inoculation of the PGPB I4 strain enhanced the wheat plant’s growth, especially under salt stress conditions. This study confirms the ameliorative role played by PGPB in tolerating salt stress in wheat and their potential use as biofertilizers to enhance its growth in saline soil and help in promoting this plant’s culture to provide food security under these perturbed global circumstances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0343-8651
1432-0991
DOI:10.1007/s00284-023-03288-y