Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials
The n-type I-V-VI2 AgBiSe2 features intrinsically low κ due to the anharmonicity of chemical bonds. Experimentally-determined isothermal section guides the starting compositions for the following AgBiSe2-based alloys. Among the undoped alloys, the Ag25Bi25Se50 exhibits a highest peak of zT∼0.75, and...
Saved in:
Published in: | Acta materialia Vol. 141; pp. 217 - 229 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-12-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The n-type I-V-VI2 AgBiSe2 features intrinsically low κ due to the anharmonicity of chemical bonds. Experimentally-determined isothermal section guides the starting compositions for the following AgBiSe2-based alloys. Among the undoped alloys, the Ag25Bi25Se50 exhibits a highest peak of zT∼0.75, and yet the neighboring Ag20Bi27.5Se52.5, which involves a Se-rich liquid phase, has a much lower zT∼0.3 at 748 K, respectively. With the incorporation of Ge, the (GeSe)0.03(AgBiSe2)0.97 exhibits an ultralow κ∼0.3 (W/mK), owing to the formation of Bi2Se3 nano-precipitate in the size of 20–40 nm. Additionally, the moiré fringes with a periodicity of 0.25 nm are observed in the Bi2Se3 nano-precipitate, implying the presence of local mass fluctuation and superlattice, which could further lead to enhancing phonon scattering and reduced κ. As a result, the ultra-low κ∼0.3 (W/mK) boosts the peak of zT up to zT∼1.05 in n-type (GeSe)0.03(AgBiSe2)0.97, which shows a 140% enhancement compared with that of the undoped AgBiSe2.
[Display omitted] |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2017.09.029 |