C-to-G editing generates double-strand breaks causing deletion, transversion and translocation
Base editors (BEs) introduce base substitutions without double-strand DNA cleavage. Besides precise substitutions, BEs generate low-frequency ‘stochastic’ byproducts through unclear mechanisms. Here, we performed in-depth outcome profiling and genetic dissection, revealing that C-to-G BEs (CGBEs) ge...
Saved in:
Published in: | Nature cell biology Vol. 26; no. 2; pp. 294 - 304 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-02-2024
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Base editors (BEs) introduce base substitutions without double-strand DNA cleavage. Besides precise substitutions, BEs generate low-frequency ‘stochastic’ byproducts through unclear mechanisms. Here, we performed in-depth outcome profiling and genetic dissection, revealing that C-to-G BEs (CGBEs) generate substantial amounts of intermediate double-strand breaks (DSBs), which are at the centre of several byproducts. Imperfect DSB end-joining leads to small deletions via end-resection, templated insertions or aberrant transversions during end fill-in. Chromosomal translocations were detected between the editing target and off-targets of Cas9/deaminase origin. Genetic screenings of DNA repair factors disclosed a central role of abasic site processing in DSB formation. Shielding of abasic sites by the suicide enzyme HMCES reduced CGBE-initiated DSBs, providing an effective way to minimize DSB-triggered events without affecting substitutions. This work demonstrates that CGBEs can initiate deleterious intermediate DSBs and therefore require careful consideration for therapeutic applications, and that HMCES-aided CGBEs hold promise as safer tools.
Huang, Qin, Shang et al. profile double-strand breaks (DSBs) generated by C-to-G base editors (CGBEs) and find that HMCES protects abasic sites and reduces CGBE-triggered DSBs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1465-7392 1476-4679 |
DOI: | 10.1038/s41556-023-01342-2 |