Seasonal variation in non-point source heavy metal pollution in Satpara Lake and its toxicity in trout fish
Heavy metal contamination in surface water is widespread throughout the world as a result of numerous anthropogenic activities and geo-genic mechanisms. This contamination is also affecting aquatic life, as fish have the potential to acquire heavy metals in their tissues making them vulnerable. Worl...
Saved in:
Published in: | Environmental monitoring and assessment Vol. 195; no. 7; p. 901 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-07-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heavy metal contamination in surface water is widespread throughout the world as a result of numerous anthropogenic activities and geo-genic mechanisms. This contamination is also affecting aquatic life, as fish have the potential to acquire heavy metals in their tissues making them vulnerable. Worldwide lakes are an important source of water for the inhabitants of the area. So, in the present study, we have focused on the Satpara Lake to check the extent of heavy metal pollution and their accumulation in fish to provide baseline data for metal pollution management. Samples were collected from three locations (inflow, center, and outflow sites) during two seasons (summer and winter). Inductively coupled plasma optical emission spectrometry (ICP-OES) was applied to analyze heavy metals concentration. Among the metals, Cd, Pb, As, and Fe revealed relatively higher concentrations. The highest concentration of heavy metal found in water and fish was of Cd, i.e., 8.87 mg L
−1
and 18.19 mg L
−1
in summer season, respectively. Arsenic concentration was also higher than the permissible limits in both water (0.76) and fish (1.17 mg L
−1
). The water quality assessment showed that in the summer season, the HPI (heavy metal pollution index) value 253.01 was more than 100, indicating the bad quality of water for drinking purposes. However, the HPI value 35.72 was less than 100 in winter. Toxicity hazard calculation of fish in summer seasons gives Hi values greater than 10.0, indicating the acute effect on human health as compared to winter. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0167-6369 1573-2959 |
DOI: | 10.1007/s10661-023-11498-x |