Novel Biosynthesis of Copper Nanoparticles Using Zingiber and Allium sp. with Synergic Effect of Doxycycline for Anticancer and Bactericidal Activity
Copper nanoparticles (CuNPs), due to their cost-effective synthesis, interesting properties, and a wide range of applications in conductive inks, cooling fluids, biomedical field, and catalysis, have attracted the attention of scientific community in recent years. The aim of the present study was to...
Saved in:
Published in: | Current microbiology Vol. 77; no. 9; pp. 2287 - 2299 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-09-2020
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Copper nanoparticles (CuNPs), due to their cost-effective synthesis, interesting properties, and a wide range of applications in conductive inks, cooling fluids, biomedical field, and catalysis, have attracted the attention of scientific community in recent years. The aim of the present study was to develop and characterize antibacterial and anticancer CuNPs synthesized via chemical and biological methods, and further synthesize CuNPs conjugated with doxycycline to study their synergic effect. During the chemical synthesis, ascorbic acid was used as a stabilizing agent, while
Zingiber officinale
and
Allium sativum-
derived extracts were used during the biological methods for synthesis of CuNPs. Characterization of CuNPs was performed by transmission electron microscopy (TEM), UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray crystallography (XRD). Antimicrobial evaluation of the nanomaterials against
Pseudomonas aeruginosa
and
Escherichia coli
was performed by using disk diffusion method, while anticancer behavior against HeLa and HepG2 cell lines was studied by MTT assay. TEM revealed spherical-shaped nanoparticles with mean size of 22.70 ± 5.67, 35.01 ± 5.84, and 19.02 ± 2.41 nm for CuNPs, Gin-CuNPs, and Gar-CuNPs, respectively, and surface plasmon resonance peaks were obtained at 570 nm, 575 nm, and 610 nm for CuNPs, Gar-CuNPs, and Gin-CuNPs, respectively. The results of FTIR confirmed the consumption of biomolecules from the plant extracts for the synthesis of CuNPs. XRD analysis also confirmed synthesis of CuNPs. Doxycycline-conjugated NPs exhibited more antibacterial effects than doxycycline or CuNPs alone. Copper nanoparticles prepared by biological synthesis are cost-effective and eco-friendly as compared to their chemical counterparts. The chemically synthesized nanoparticles displayed more significant antimicrobial activity when capped with doxycycline than
Z. officinale
and
A. sativum
-mediated CuNPs; however, green-synthesized nanoparticles showed greater anticancer activity than their chemical counterparts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-020-02058-4 |