Unravelling the Molecular Structure and Confining Environment of an Organometallic Catalyst Heterogenized within Amorphous Porous Polymers
The catalytic activity of multifunctional, microporous materials is directly linked to the spatial arrangement of their structural building blocks. Despite great achievements in the design and incorporation of isolated catalytically active metal complexes within such materials, a detailed understand...
Saved in:
Published in: | Angewandte Chemie International Edition Vol. 62; no. 44; p. e202310878 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
26-10-2023
Wiley-VCH Verlag |
Edition: | International ed. in English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The catalytic activity of multifunctional, microporous materials is directly linked to the spatial arrangement of their structural building blocks. Despite great achievements in the design and incorporation of isolated catalytically active metal complexes within such materials, a detailed understanding of their atomic‐level structure and the local environment of the active species remains a fundamental challenge, especially when these latter are hosted in non‐crystalline organic polymers. Here, we show that by combining computational chemistry with pair distribution function analysis,
129
Xe NMR, and Dynamic Nuclear Polarization enhanced NMR spectroscopy, a very accurate description of the molecular structure and confining surroundings of a catalytically active Rh‐based organometallic complex incorporated inside the cavity of amorphous bipyridine‐based porous polymers is obtained. Small, but significant, differences in the structural properties of the polymers are highlighted depending on their backbone motifs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202310878 |