The Magnetic Field Freezes the Mercedes-Benz Water Model
In this study, we investigate the impact of magnetic fields on the structural and thermodynamic properties of water. To accomplish this, we employed the Mercedes-Benz (MB) model, a two-dimensional representation of water using Lennard-Jones disks with angle-dependent interactions that closely mimic...
Saved in:
Published in: | Entropy (Basel, Switzerland) Vol. 25; no. 12; p. 1618 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
04-12-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we investigate the impact of magnetic fields on the structural and thermodynamic properties of water. To accomplish this, we employed the Mercedes-Benz (MB) model, a two-dimensional representation of water using Lennard-Jones disks with angle-dependent interactions that closely mimic hydrogen bond formation. We extended the MB model by introducing two charges to enable interaction with the magnetic field. Employing molecular dynamics simulations, we thoroughly explored the thermodynamic properties concerning various magnetic flux intensities. As a result, we observed that under a weak magnetic flux, the property of water remained unaltered, while a stronger flux astonishingly led to the freezing of water molecules. Furthermore, our study revealed that once a specific flux magnitude was reached, the density anomaly disappeared, and an increase in flux caused the MB particles to form a glassy state. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e25121618 |