Longitudinal Seismic Response of Metro Tunnels Crossing a Fault with Multi-Slip Surfaces

There are multiple seismic fault zones near Xi’an in China, among which the Li Piedmont Fault has multiple slip surfaces. A 3D finite element dynamic Soil–Fault–Tunnel model was established based on the engineering background of the Xi’an Metro tunnel orthogonally crossing the Li Piedmont Fault. The...

Full description

Saved in:
Bibliographic Details
Published in:Buildings (Basel) Vol. 14; no. 1; p. 207
Main Authors: Wang, Qiyao, Yang, Yawu, Teng, Hongquan, He, Yifei
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There are multiple seismic fault zones near Xi’an in China, among which the Li Piedmont Fault has multiple slip surfaces. A 3D finite element dynamic Soil–Fault–Tunnel model was established based on the engineering background of the Xi’an Metro tunnel orthogonally crossing the Li Piedmont Fault. The input seismic loads used the Chi-Chi, El-Centro, and artificial seismic waves, and the latter was artificially synthesized based on seismic conditions and site conditions of actual engineering. The Chi-Chi seismic wave with larger PGV/PGA and wider acceleration-sensitive area is a near-field seismic wave, while the others are far-field seismic waves. The seismic loads were transformed into the equivalent nodal force on the boundary nodes of the model, and nonlinear dynamic calculation was carried out to obtain the longitudinal seismic response of the structure. The main results show that the fault amplifies the seismic response of the tunnel, and the tunnel at the position of the fault slip surfaces is more vulnerable to failure, especially near the slip surface between the hanging wall and the fault, where the maximum acceleration, soil pressure, and internal force of the tunnel structure occur. In addition, the seismic response of the tunnel and soil caused by near-field seismic motion is significantly stronger than that caused by far-field seismic motion.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings14010207