A numerical investigation of dopant segregation by modified vertical gradient freezing with moderate magnetic and weak electric fields
The paper numerically investigates melt growth of doped gallium-antimonide (GaSb) semiconductor crystals by the vertical gradient freeze (VGF) method utilizing a submerged heater. Electromagnetic (EM) stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by a...
Saved in:
Published in: | International journal of engineering science Vol. 43; no. 11; pp. 908 - 924 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-07-2005
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper numerically investigates melt growth of doped gallium-antimonide (GaSb) semiconductor crystals by the vertical gradient freeze (VGF) method utilizing a submerged heater. Electromagnetic (EM) stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a small radial electric current in the melt together with an axial magnetic field. The transport of any dopant by the stirring can promote better compositional homogeneity. This investigation presents a numerical model for the unsteady transport of a dopant during the VGF process by submerged heater growth with a moderate axial magnetic field and a weak electric field. Numerical predictions of the dopant distributions in the crystal and in the melt at several different stages during growth are presented. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0020-7225 1879-2197 |
DOI: | 10.1016/j.ijengsci.2005.03.001 |