Activated instability of homogeneous bubble nucleation and growth
For the superheated Lennard-Jones liquid, the free energy of forming a bubble with a given particle number and volume is calculated using density-functional theory. As conjectured, a consequence of known properties of the critical cavity [S. N. Punnathanam and D. S. Corti, J. Chem. Phys. 119, 10 224...
Saved in:
Published in: | Physical review letters Vol. 99; no. 7; p. 076102 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
17-08-2007
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the superheated Lennard-Jones liquid, the free energy of forming a bubble with a given particle number and volume is calculated using density-functional theory. As conjectured, a consequence of known properties of the critical cavity [S. N. Punnathanam and D. S. Corti, J. Chem. Phys. 119, 10 224 (2003), the free energy surface terminates at a locus of instability. These stability limits reside, however, unexpectedly close to the saddle point. A new picture of homogeneous bubble nucleation and growth emerges from our study, being more appropriately described as an "activated instability." |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.99.076102 |