Effect of the target shuttering on the characteristics of the Ta–Si–N thin films by reactive magnetron co-sputtering

The Ta–Si–N thin films were prepared using a reactive magnetron co-sputtering with and without an alternating target shutter control at different N 2 flow ratios (FN 2% = FN2/(FAr + FN 2) × 100%) of 3–20%. The evolution of microstructure, composition, morphology, resistivity, and nanomechanical prop...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology Vol. 204; no. 6; pp. 1071 - 1075
Main Authors: Chung, C.K., Chen, T.S., Nautiyal, A., Chang, N.W., Hung, S.T.
Format: Journal Article Conference Proceeding
Language:English
Published: Amsterdam Elsevier B.V 25-12-2009
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Ta–Si–N thin films were prepared using a reactive magnetron co-sputtering with and without an alternating target shutter control at different N 2 flow ratios (FN 2% = FN2/(FAr + FN 2) × 100%) of 3–20%. The evolution of microstructure, composition, morphology, resistivity, and nanomechanical properties of Ta–Si–N films was characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrum (EDS), scanning electronic microscopy, four-point probe technique and nanoindentation, respectively. The broad XRD peaks of Ta–Si–N films with and without target shuttering at low 3–10 FN 2% showed the microstructure was quasi-amorphous i.e. nanocrystalline grains embedded in an amorphous matrix. The quasi-amorphous Ta–Si–N without target shuttering was transformed into the polycrystalline phase at 20 FN 2% while that with target shuttering still remained in quasi-amorphous microstructure due to the increased Si content. The resistivity of quasi-amorphous Ta–Si–N films with and without target shuttering at 3–10 FN 2% ranged in 262–385 μΩ cm while that of Ta–Si–N films at 20 FN 2% was much higher at 976–9925 μΩ cm. The hardness of quasi-amorphous Ta–Si–N films with and without target shuttering at 3–10 FN 2% ranged from 14.3 to 18.5 GPa while that of polycrystalline Ta–Si–N film was about 10.3 GPa. Quasi-amorphous Ta–Si–N films had much lower resistivity, higher nanohardness and smooth morphology compared to the polycrystalline film.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2009.06.031