Promising Thermoelectric Bulk Materials with 2D Structures
Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superl...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 29; no. 45 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-12-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two‐dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi2Te3‐, SnSe‐, and BiCuSeO‐based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered.
Thermoelectric bulk materials with 2D structures possess natural structures similar to artificial superlattices, hence enabling the utilization of enhancement methods for superlattices. General optimization methods for Bi2Te3 are reviewed; meanwhile, the progress of advanced research into SnSe and BiCuSeO as promising thermoelectric materials is summarized. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201702676 |