Canagliflozin Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism and Inhibiting Inflammation through Induction of Autophagy

PURPOSENonalcoholic fatty liver disease (NAFLD) is closely associated with metabolic diseases, including obesity and diabetes, and has gradually become the most common cause of chronic liver disease. We investigated the effects of sodium glucose cotransporter 2 (SGLT2) inhibitor canagliflozin on NAF...

Full description

Saved in:
Bibliographic Details
Published in:Yonsei medical journal Vol. 63; no. 7; pp. 619 - 631
Main Authors: Xu, Zhipeng, Hu, Wenxin, Wang, Bin, Xu, Ting, Wang, Jianning, Wei, Dan
Format: Journal Article
Language:English
Published: Yonsei University College of Medicine 01-07-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PURPOSENonalcoholic fatty liver disease (NAFLD) is closely associated with metabolic diseases, including obesity and diabetes, and has gradually become the most common cause of chronic liver disease. We investigated the effects of sodium glucose cotransporter 2 (SGLT2) inhibitor canagliflozin on NAFLD in high-fat diet (HFD)-induced obese mice and possible underlying mechanisms. MATERIALS AND METHODSMale C57BL/6 mice were fed a normal-diet, HFD, or HFD with canagliflozin for 14 weeks. AML-12 hepatocytes were treated with canagliflozin. Expression of related pathways was assessed. RESULTSCanagliflozin administration reduced body weight and fat mass, compared with HFD alone. Canagliflozin improved glucose and lipid metabolic disorders. Compared with HFD-fed mice, liver weight, serum alanine transaminase (ALT) levels, and hepatic lipid accumulation were decreased after canagliflozin administration. Additionally, canagliflozin upregulated lipolysis markers (CPT1a, ACOX1, and ACADM), downregulated lipogenesis markers (SREBP-1c and FASN), and suppressed the production of inflammatory cytokines (TNFα, MCP1, IL-1β, and IL-6), consistent with significantly increased LC3 II/I and Atg7 levels in the liver following canagliflozin treatment. In vitro, canagliflozin increased CPT1a, ACOX1, and ACADM expression, decreased SREBP-1c and FASN protein expression, and reduced TNFα, MCP1, IL-1β, and IL-6 mRNA levels in lipid mixture (LM)-induced hepatocytes in a dose-dependent manner. These changes were reversed by 3-MA, an autophagy inhibitor. CONCLUSIONOur findings suggest that canagliflozin ameliorates the pathogenesis of NAFLD by regulating lipid metabolism and inhibiting inflammation, which may be associated with its promotion of autophagy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Zhipeng Xu and Wenxin Hu contributed equally to this work.
ISSN:0513-5796
1976-2437
DOI:10.3349/ymj.2022.63.7.619