A dynamic priority-based approach to concurrent toolpath planning for multi-material layered manufacturing

This paper presents an approach to concurrent toolpath planning for multi-material layered manufacturing (MMLM) to improve the fabrication efficiency of relatively complex prototypes. The approach is based on decoupled motion planning for multiple moving objects, in which the toolpaths of a set of t...

Full description

Saved in:
Bibliographic Details
Published in:Computer aided design Vol. 42; no. 12; pp. 1095 - 1107
Main Authors: Choi, S.H., Zhu, W.K.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-12-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an approach to concurrent toolpath planning for multi-material layered manufacturing (MMLM) to improve the fabrication efficiency of relatively complex prototypes. The approach is based on decoupled motion planning for multiple moving objects, in which the toolpaths of a set of tools are independently planned and then coordinated to deposit materials concurrently. Relative tool positions are monitored and potential tool collisions detected at a predefined rate. When a potential collision between a pair of tools is detected, a dynamic priority scheme is applied to assign motion priorities of tools. The traverse speeds of tools along the x -axis are compared, and a higher priority is assigned to the tool at a higher traverse speed. A tool with a higher priority continues to deposit material along its original path, while the one with a lower priority gives way by pausing at a suitable point until the potential collision is eliminated. Moreover, the deposition speeds of tools can be adjusted to suit different material properties and fabrication requirements. The proposed approach has been incorporated in a multi-material virtual prototyping (MMVP) system. Digital fabrication of prototypes shows that it can substantially shorten the fabrication time of relatively complex multi-material objects. The approach can be adapted for process control of MMLM when appropriate hardware becomes available. It is expected to benefit various applications, such as advanced product manufacturing and biomedical fabrication.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0010-4485
1879-2685
DOI:10.1016/j.cad.2010.07.004