Thermal buckling load optimization of angle-ply laminated cylindrical shells

In this study, thermal buckling load optimization of symmetrically laminated cylindrical shells subjected to uniformly distributed temperature load is investigated. The objective function is to maximize the critical temperature capacity of laminated shells and the fibre orientation is considered as...

Full description

Saved in:
Bibliographic Details
Published in:Materials in engineering Vol. 30; no. 3; pp. 532 - 536
Main Authors: Topal, U., Uzman, Ü.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-03-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, thermal buckling load optimization of symmetrically laminated cylindrical shells subjected to uniformly distributed temperature load is investigated. The objective function is to maximize the critical temperature capacity of laminated shells and the fibre orientation is considered as design variable. The first-order shear deformation theory is used to study thermal buckling response of the laminates. The modified feasible direction method is used as optimization routine. For this purpose, a program based on FORTRAN is used for the optimization of shells. Finally, the effects of number of layers, length-to-radius ratio and boundary conditions on the optimum results are investigated.
ISSN:0261-3069
DOI:10.1016/j.matdes.2008.05.052