Detection and Segmentation of Pectoral Muscle on MLO-View Mammogram Using Enhancement Filter

The presence of predominant density region of the pectoral muscle in Medio-Lateral Oblique (MLO) view of the mammograms can affect or bias the results of mammograms processing for breast cancer detection using intensity based methods. Therefore, to improve the diagnostic performance of breast cancer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical systems Vol. 41; no. 12; pp. 190 - 13
Main Authors: Vikhe, P. S., Thool, V. R.
Format: Journal Article
Language:English
Published: New York Springer US 01-12-2017
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The presence of predominant density region of the pectoral muscle in Medio-Lateral Oblique (MLO) view of the mammograms can affect or bias the results of mammograms processing for breast cancer detection using intensity based methods. Therefore, to improve the diagnostic performance of breast cancer detection using computer-aided system, identification and segmentation of pectoral muscle is an important task. This paper presents, an intensity based approach to identify the pectoral region in mammograms. In the presented approach enhancement mask and threshold technique is used to enhance and select the pectoral region and boundary points respectively, to find the boundary of pectoral muscle. Then curve fitting by Least Square Error (LSE) method is used to refine the rough initial boundaries. The proposed approach was applied on 320 mammograms from mini-Mammographic Image Analysis Society (mini-MIAS) database of 322 mammograms, with acceptable rate of 96.56% from radiologist experts. The performance evaluation for pectoral muscle segmentation, based on Hausdorff distance (H d ), False Positive (FP) and False Negative (FN) rate, shows the usefulness and effectiveness of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0148-5598
1573-689X
DOI:10.1007/s10916-017-0839-8