SpCas9-NG self-targets the sgRNA sequence in plant genome editing
Streptococcus pyogenes Cas9 (SpCas9)-NG recognizes NGN protospacer adjacent motifs and expands the scope of genome-editing tools. In this study, we found that SpCas9-NG not only targeted the genome but also efficiently self-targeted the single-guide RNA sequence in transfer DNA in transgenic plants,...
Saved in:
Published in: | Nature plants Vol. 6; no. 3; pp. 197 - 201 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-03-2020
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Streptococcus pyogenes
Cas9 (SpCas9)-NG recognizes NGN protospacer adjacent motifs and expands the scope of genome-editing tools. In this study, we found that SpCas9-NG not only targeted the genome but also efficiently self-targeted the single-guide RNA sequence in transfer DNA in transgenic plants, potentially increasing off-target risk by generating new single-guide RNAs. We further showed that the self-target effect of SpCas9-NG could be greatly alleviated by using a modified single-guide RNA scaffold starting with a GCCCC sequence.
The widely used SpCas9-NG tool can edit genomic targets, but unfortunately also the guide RNA sequences that are present in the transfer DNA and integrated into the plant genome. The authors propose a strategy to alleviate this self-editing risk. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2055-0278 2055-0278 |
DOI: | 10.1038/s41477-020-0603-9 |