Aberrant GSH reductase and NOX activities concur with defective CFTR to pro-oxidative imbalance in cystic fibrosis airways

Cystic fibrosis (CF) is associated to impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel also causing decreased glutathione (GSH) secretion, defective airway bacterial clearance and inflammation. Here we checked the main ROS-producing and ROS-scavenging enzymes as potential...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioenergetics and biomembranes Vol. 50; no. 2; pp. 117 - 129
Main Authors: de Bari, L., Favia, M., Bobba, A., Lassandro, R., Guerra, L., Atlante, A.
Format: Journal Article
Language:English
Published: New York Springer US 01-04-2018
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cystic fibrosis (CF) is associated to impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel also causing decreased glutathione (GSH) secretion, defective airway bacterial clearance and inflammation. Here we checked the main ROS-producing and ROS-scavenging enzymes as potential additional factors involved in CF pathogenesis. We found that CFBE41o-cells, expressing F508del CFTR, have increased NADPH oxidase (NOX) activity and expression level, mainly responsible of the increased ROS production, and decreased glutathione reductase (GR) activity, not dependent on GR protein level decrease. Furthermore, defective CFTR proved to cause both extracellular and intracellular GSH level decrease, probably by reducing the amount of extracellular GSH-derived cysteine required for cytosolic GSH synthesis. Importantly, we provide evidence that defective CFTR and NOX/GR activity imbalance both contribute to NADPH and GSH level decrease and ROS overproduction in CF cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0145-479X
1573-6881
DOI:10.1007/s10863-018-9748-x