Preprocessing of centred logratio transformed density functions using smoothing splines
With large-scale database systems, statistical analysis of data, occurring in the form of probability distributions, becomes an important task in explorative data analysis. Nevertheless, due to specific properties of density functions, their proper statistical treatment of these data still represent...
Saved in:
Published in: | Journal of applied statistics Vol. 43; no. 8; pp. 1419 - 1435 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Abingdon
Taylor & Francis
10-06-2016
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With large-scale database systems, statistical analysis of data, occurring in the form of probability distributions, becomes an important task in explorative data analysis. Nevertheless, due to specific properties of density functions, their proper statistical treatment of these data still represents a challenging task in functional data analysis. Namely, the usual
metric does not fully accounts for the relative character of information, carried by density functions; instead, their geometrical features are captured by Bayes spaces of measures. The easiest possibility of expressing density functions in an
space is to use centred logratio transformation, even though this results in functional data with a constant integral constraint that needs to be taken into account in further analysis. While theoretical background for reasonable analysis of density functions is already provided comprehensively by Bayes spaces themselves, preprocessing issues still need to be developed. The aim of this paper is to introduce optimal smoothing splines for centred logratio transformed density functions that take all their specific features into account and provide a concise methodology for reasonable preprocessing of raw (discretized) distributional observations. Theoretical developments are illustrated with a real-world data set from official statistics and with a simulation study. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2015.1103706 |