Activation of the CXCL12/CXCR4 signaling axis may drive vascularization of the ovine placenta

Early pregnancy, when most embryonic losses occur, is a critical period in which vital placental vascularization is established. Vascular endothelial growth factor (VEGF) is a potent inducer of angiogenesis, and factors that regulate VEGF function, expression, or both may ultimately affect vasculari...

Full description

Saved in:
Bibliographic Details
Published in:Domestic animal endocrinology Vol. 47; pp. 11 - 21
Main Authors: Quinn, K.E., Ashley, A.K., Reynolds, L.P., Grazul-Bilska, A.T., Ashley, R.L.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-04-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Early pregnancy, when most embryonic losses occur, is a critical period in which vital placental vascularization is established. Vascular endothelial growth factor (VEGF) is a potent inducer of angiogenesis, and factors that regulate VEGF function, expression, or both may ultimately affect vascularization. Activation of the C-X-C chemokine receptor type 4 (CXCR4) by its cognate ligand, C-X-C chemokine ligand 12 (CXCL12), increases VEGF synthesis and secretion, which in turn stimulates CXCL12 and CXCR4 production and this synergistic regulation may influence placental vascularization. We hypothesized that expression of CXCL12, CXCR4, select angiogenic factors, and their receptors would increase in placental tissues during early pregnancy and that treatment of ovine trophectoderm cells with CXCL12 would increase production of angiogenic factors. To test this hypothesis, maternal caruncle (CAR) and fetal extraembryonic membrane (FM) tissues were collected on days 18, 20, 22, 25, 26, and 30 of pregnancy and on day 10 of the estrous cycle (control, NP) to determine relative mRNA or protein expression of CXCL12 and CXCR4 and selected angiogenic factors. In CAR, expression of mRNA for CXCR4 increased on day 18, 20, 22, and 25 and CXCL12 increased on day 18 and 20 compared with NP ewes. CXCL12 protein followed a similar pattern in CAR tissue, with greater levels on day 20 than in NP tissue. Greater levels of fibroblast growth factor 2 (FGF2) mRNA was observed in CAR on day 20 of gestation than on day 30. In FM, CXCL12, CXCR4, angiopoietin 1, VEGF, and VEGF receptor 1 were enhanced with advancing pregnancy, whereas FGF2 and kinase insert domain receptor (or VEGF receptor 2) peaked on day 25. An increase in protein levels occurred on day 25 compared with day 20 in FM for CXCL12 and CXCR4, as well as a similar tendency for FGF2 protein. Both CXCL12 and CXCR4 are specifically localized to trophoblast cells and to the uterine luminal and glandular epithelium. Treatment of ovine trophectoderm cells with CXCL12 increased mRNA expression for VEGF and FGF2. The relationship between VEGF, FGF2, and the CXCL12/CXCR4 signaling underscores the potential role for this chemokine axis in driving placentation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0739-7240
1879-0054
DOI:10.1016/j.domaniend.2013.12.004