mTOR: Role in cancer, metastasis and drug resistance

Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that gets inputs from the amino acids, nutrients, growth factor, and environmental cues to regulate varieties of fundamental cellular processes which include protein synthesis, growth, metabolism, aging, regeneration, autophagy, etc....

Full description

Saved in:
Bibliographic Details
Published in:Seminars in cancer biology Vol. 59; pp. 92 - 111
Main Author: Murugan, Avaniyapuram Kannan
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-12-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that gets inputs from the amino acids, nutrients, growth factor, and environmental cues to regulate varieties of fundamental cellular processes which include protein synthesis, growth, metabolism, aging, regeneration, autophagy, etc. The mTOR is frequently deregulated in human cancer and activating somatic mutations of mTOR were recently identified in several types of human cancer and hence mTOR is therapeutically targeted. mTOR inhibitors were commonly used as immunosuppressors and currently, it is approved for the treatment of human malignancies. This review briefly focuses on the structure and biological functions of mTOR. It extensively discusses the genetic deregulation of mTOR including amplifications and somatic mutations, mTOR-mediated cell growth promoting signaling, therapeutic targeting of mTOR and the mechanisms of resistance, the role of mTOR in precision medicine and other recent advances in further understanding the role of mTOR in cancer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1044-579X
1096-3650
DOI:10.1016/j.semcancer.2019.07.003