Acute changes in passive stiffness of the individual hamstring muscles induced by resistance exercise: effects of muscle length and exercise duration

Purpose A previous study revealed that resistance exercise with eccentric contraction and a wide range of motion (ROM) can acutely decrease muscle stiffness of a specific muscle. To explore further approaches to decrease the stiffness, we examined the acute changes in passive stiffness of the indivi...

Full description

Saved in:
Bibliographic Details
Published in:European journal of applied physiology Vol. 123; no. 3; pp. 655 - 666
Main Authors: Kawama, Raki, Hojo, Tatsuya, Wakahara, Taku
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-03-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose A previous study revealed that resistance exercise with eccentric contraction and a wide range of motion (ROM) can acutely decrease muscle stiffness of a specific muscle. To explore further approaches to decrease the stiffness, we examined the acute changes in passive stiffness of the individual hamstring muscles after eccentric-only resistance exercise with different combinations of muscle lengths and exercise durations. Methods Thirteen healthy young male participants performed three sessions of eccentric-only exercises that comprised stiff-leg deadlift with different muscle lengths and exercise durations (duration per repetition × the total number of repetitions) on separate days as follows: (1) short muscle lengths with a short duration (SS); (2) long muscle lengths with a short duration (LS); and (3) long muscle lengths with a long duration (LL). Maximal joint ROM, passive torque, shear modulus of each hamstring muscle, and maximal isometric torque of knee flexion were measured before, and at 3, 30, and 60 min after each session. Results The shear modulus of the semimembranosus was significantly lower at 3 min post-exercise (129.8 ± 22.7 kPa) than at pre-exercise (140.5 ± 19.1 kPa, p  < 0.01) in LL, but not in SS or LS. No significant differences were observed in the shear moduli of the biceps femoris long head or semitendinosus between pre-exercise and 3 min post-exercise in any session. Conclusion The combination of long muscle lengths and a long duration during eccentric-only resistance exercise is important to immediately decrease the stiffness (shear modulus) of a specific muscle.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1439-6319
1439-6327
DOI:10.1007/s00421-022-05092-1