Oblivious Sequential Decode and Forward Cooperative Strategies for the Wireless Relay Channel

In a dynamic wireless network where a source terminal communicates with a destination, in presence of other users in the network, it is worthwhile to consider oblivious relaying strategies of a relay in close proximity to the source transmitter. The source-relay channel is assumed to be a fixed gain...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 60; no. 11; pp. 3228 - 3238
Main Authors: Braginskiy, Evgeniy, Steiner, Avi, Shitz, Shlomo Shamai
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-11-2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a dynamic wireless network where a source terminal communicates with a destination, in presence of other users in the network, it is worthwhile to consider oblivious relaying strategies of a relay in close proximity to the source transmitter. The source-relay channel is assumed to be a fixed gain additive white Gaussian noise (AWGN) channel due to source-relay colocation. The source-destination and the relay-destination transmissions are subject to block flat fading dynamics. A perfect channel state information (CSI) at the respective receivers only is assumed. With the expected throughput as a performance measure, we incorporate a two-layer broadcast approach into a cooperative strategy based on the decode-and-forward scheme - Sequential Decode-and Forward (SDF). The broadcast approach splits the transmitted rate into superimposed layers, corresponding to a "bad" and a "good" channel states, allowing better adaptation to the actual channel conditions. The achievable rate expressions for the SDF strategy are derived under the broadcast approach for multiple settings including single user, multiple-input single-output (MISO) and the general relay setting using successive decoding technique, both numerically and analytically. Continuous broadcasting lower bounds are derived for the MISO and for the oblivious cooperation scenarios.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2012.081512.110361