Synthesis and Characterization of Amorphous Molybdenum Sulfide (MoSx)/CdIn2S4 Composite Photocatalyst: Co-Catalyst Using in the Hydrogen Evolution Reaction

Co-catalyst deposition is used to improve the surface and electrical properties of photocatalysts. In this work, MoSx/CdIn2S4 nanocomposites were prepared by a facile hydrothermal and photodeposition route. The basic crystalline phases and morphology of the as-prepared samples were determined, and t...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts Vol. 10; no. 12; p. 1455
Main Authors: Qi Li, Wanli Liu, Xuejian Xie, Xianglong Yang, Xiufang Chen, Xiangang Xu
Format: Journal Article
Language:English
Published: MDPI AG 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Co-catalyst deposition is used to improve the surface and electrical properties of photocatalysts. In this work, MoSx/CdIn2S4 nanocomposites were prepared by a facile hydrothermal and photodeposition route. The basic crystalline phases and morphology of the as-prepared samples were determined, and these results showed that MoSx was tightly anchored onto CdIn2S4 by sharing the same S atom. In the hydrogen production experiments, MoSx/CdIn2S4-40 displayed the optimal photocatalytic hydrogen production yield in 4 h. The H2 evolution rate reached 2846.73 μmol/g/h, which was 13.6-times higher than that of pure CdIn2S4. Analyzing the photocatalytic enhancement mechanisms revealed that this unique structure had a remarkable photogenerated electron-hole pair separation efficiency, rapid charge carrier transfer channels, and more abundant surface reaction sites. The use of co-catalyst (MoSx) greatly improved the photocatalytic activity of CdIn2S4.
ISSN:2073-4344
DOI:10.3390/catal10121455